Burn, baby, burn: Nuclear scientists achieve major fusion feat

With 192 lasers and temperatures more than three times hotter than the center of the sun, scientists hit — at least for a fraction of a second — a key milestone on the long road toward nearly pollution-free fusion energy.

Researchers at the National Ignition Facility at the Lawrence Livermore National Lab in California were able to spark a fusion reaction that briefly sustained itself — a major feat because fusion requires such high temperatures and pressures that it easily fizzles out.

The ultimate goal, still years away, is to generate power the way the sun generates heat, by smooshing hydrogen atoms so close to each other that they combine into helium, which releases torrents of energy.

WATCH: Is alluring but elusive fusion energy possible in our lifetime?

A team of more than 100 scientists published the results of four experiments that achieved what is known as a burning plasma in Wednesday’s journal Nature. With those results, along with preliminary results announced last August from follow-up experiments, scientists say they are on the threshold of an even bigger advance: ignition. That’s when the fuel can continue to “burn” on its own and produce more energy than what’s needed to spark the initial reaction.

“We’re very close to that next step,” said study lead author Alex Zylstra, an experimental physicist at Livermore.

Nuclear fusion presses together two types of hydrogen found in water molecules. When they fuse, “a small amount (milligrams) of fuel produces enormous amounts of energy and it’s also very ‘clean’ in that it produces no radioactive waste,” said Carolyn Kuranz, a University of Michigan experimental plasma physicist who wasn’t part of the research. “It’s basically limitless, clean energy that can be deployed anywhere,” she said.

Researchers around the world have been working on the technology for decades, trying different approaches. Thirty-five countries are collaborating on a project in Southern France called the International Thermonuclear Experimental Reactor that uses enormous magnets to control the superheated plasma. That is expected to begin operating in 2026.

Earlier experiments in the United States and United Kingdom succeeded in fusing atoms, but achieved no self-heating, said Steven Cowley, director of the Princeton Plasma Physics Laboratory, who wasn’t part of this study.

But don’t bank on fusion just yet.

“The result is scientifically very exciting for us,” said study co-author Omar Hurricane, chief scientist for Lawrence Livermore’s fusion program. “But we’re a long way from useful energy.

To read the complete article please visit PBS

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .